Intrapartum management of pre-eclampsia – and beyond.
What's new?

- What will arrive on DS for delivery?
- How should we be controlling Blood Pressure?
- Who should receive Magnesium? (and why?)
- When should we deliver?
- When will we see this group of women again?
What's new?

- What will arrive on DS for delivery?
- How should we be controlling Blood Pressure?
- Who should receive Magnesium? (and why?)
- When should we deliver?
- When will we see this group of women again?
Definition of preeclampsia

De novo hypertension

(≥ 140 &/or ≥ 90 mm Hg [K5])

Proteinuria

(≥ 300 mg/dy or spot Pr/Cr ≥ 30 mg

Renal insufficiency

(Cr ≥ 90 μmol/L or oliguria)

Liver disease

(Elevated transaminases or RUQ/epigastric pain)

Neurological problems

Eclampsia, hypereflexia + clonus

Severe headaches with hyperreflexia

Persistent visual disturbance (scotoma)

Haematological disturbances

Thrombocytopenia, DIC, haemolysis

Fetal growth restriction

Signs in eclampsia

<table>
<thead>
<tr>
<th>HT</th>
<th>P</th>
<th>No HT</th>
<th>No P</th>
</tr>
</thead>
<tbody>
<tr>
<td>No P</td>
<td>10</td>
<td>30</td>
<td>20</td>
</tr>
<tr>
<td>P</td>
<td>0</td>
<td>40</td>
<td>10</td>
</tr>
<tr>
<td>HT</td>
<td>0</td>
<td>0</td>
<td>60</td>
</tr>
<tr>
<td>P + HT</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

HT – hypertension, P - proteinuria
NCCWCH Guideline: Hypertension in Pregnancy

Assessment of proteinuria

• Use an automated reagent-strip reading device to estimate proteinuria
• If strip ≥ 1+, use a spot urinary protein:creatinine ratio (>30 mg/mmol) OR 24-h urine collection (300 mg) to diagnose proteinuria
• Where using 24-h collection, use a recognised method of evaluating completeness of collection
• Do not repeat quantitation of proteinuria

<table>
<thead>
<tr>
<th>Point-of-care dipstick analysis (Waugh et al. 2004)</th>
<th>Spot Pr/Cr ratio (Cate et al. 2008)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off ≥ 1+ (Reference cut-off 300 mg/24)</td>
<td>Cut-off 30 ng/mmol (9 studies, 1003 women)</td>
</tr>
<tr>
<td>Visual (6 studies n=17)</td>
<td>Se 83.6 (77.5-89.7) %</td>
</tr>
<tr>
<td>SPN LNL</td>
<td>Sp 76.3 (72.6–80.0) %</td>
</tr>
<tr>
<td>LR+ 3.48 (1.66–7.27)</td>
<td>LR− 0.6 (0.45–0.8)</td>
</tr>
<tr>
<td>LR− 0.22 (0.14–0.36)</td>
<td>PPV 77.7%</td>
</tr>
</tbody>
</table>

Question
Should spot Pr/Cr or Alb/Cr ratio replace 24 h urine protein measurement in assessment of proteinuria in pregnancy.

Key outcome = maternal (or fetal) morbidity
Management of women with pre-eclampsia

<table>
<thead>
<tr>
<th>Degree of hypertension</th>
<th>Mild hypertension (140/90 to 149/99 mmHg)</th>
<th>Moderate hypertension (150/100 to 159/109 mmHg)</th>
<th>Severe hypertension (160/110 mmHg or higher)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admit to hospital</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Treat</td>
<td>No</td>
<td>With oral labetalol™ as first-line treatment to keep:</td>
<td>With oral labetalol™ as first-line treatment to keep:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• diastolic blood pressure between 80–100 mmHg</td>
<td>• diastolic blood pressure between 80–100 mmHg</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• systolic blood pressure less than 150 mmHg</td>
<td>• systolic blood pressure less than 150 mmHg</td>
</tr>
<tr>
<td>Measure blood pressure</td>
<td>At least four times a day</td>
<td>At least four times a day</td>
<td>More than four times a day, depending on clinical circumstances</td>
</tr>
<tr>
<td>Test for proteinuria</td>
<td>Do not repeat quantification of proteinuria</td>
<td>Do not repeat quantification of proteinuria</td>
<td>Do not repeat quantification of proteinuria</td>
</tr>
<tr>
<td>Blood tests</td>
<td>Monitor using the following tests twice a week: kidney function, electrolytes, full blood count, transaminases, bilirubin</td>
<td>Monitor using the following tests three times a week: kidney function, electrolytes, full blood count, transaminases, bilirubin</td>
<td>Monitor using the following tests three times a week: kidney function, electrolytes, full blood count, transaminases, bilirubin</td>
</tr>
</tbody>
</table>

NICE Clinical Guideline 107, RCOG 2010
Mechanism of cerebral injury
Principles of antihypertensive management

Cerebral autoregulation

CBF (ml/100g/min)

Normotensive patient

Hypertensive patient

Mean arterial pressure (mm Hg)

Acute arterial hypertension

Forced overdistension cerebral vasculature
Damage to blood-brain barrier
Extravasation fluid into parenchyma (vasogenic oedema)

Cerebral haemorrhage
Cerebral infarction

T2

DWI
What's new?

- What will arrive on DS for delivery?
- **How should we be controlling Blood Pressure?**
- Who should receive Magnesium? (and why?)
- When should we deliver?
- When will we see this group of women again?
Management of severe hypertension

- **Hydralazine**
 5 mg IV bolus (repeated at intervals of 20-30 min)

- **Labetolol**
 40 mg IV bolus (repeated at intervals of 10-15min at increasing dose up to max. 300 mg)

- **Nifedipine**
 10 mg PO (repeated @ 30 min)

NICE Clinical Guideline 107, RCOG 2010
Hydralazine for treatment of severe hypertension in pregnancy

Maternal outcomes
- Persistent severe HT: Trend to lower rates vs labetolol, 0 v 5%, RR 0.29 [0.08-1.04]
- Hypotension: 10 v 0%, RR 3.29 [1.5-7.3]
- Abruption: 18 v 0%, RR 4.17 [1.2-14.3]
- Oliguria (3) – 17 v 0%, RR 4.00 [1.22-12.5]

Maternal side effects
- Headache: 29 v 0, RR 1.61 [1.06-2.4]

Fetal outcomes
- Adverse effect on FHR: 11 v 0, RR 2.0 [1.3-3.2]
- Low 1 min Apgar: 67 v 15, RR 2.7 [1.3-5.9]

Figures are median event rate

Magee et al. BMJ 2003
What's new?

• What will arrive on DS for delivery?
• How should we be controlling Blood Pressure?
• Who should receive Magnesium? (and why?)
• When should we deliver?
• When will we see this group of women again?
Magnesium sulphate in eclampsia
Overview of randomised trials vs. other anticonvulsant

- Compared to phenytoin, diazepam, lytic cocktail:

Magnesium sulphate associated with:

- Lower rate recurrent seizures \(\text{RR} \ 0.41 \ (0.32-0.51) \)
- Lower rate maternal death \(\text{RR} \ 0.62 \ (0.39-0.99) \)

- Only 1 trial multicentre with adequate sample size
 \((\text{Eclampsia Collaborative Group 1995}) \)
Magnesium sulphate in preeclampsia

<table>
<thead>
<tr>
<th>Condition</th>
<th>Relative Risk (95% CI)</th>
<th>Number of events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severe pre-eclampsia</td>
<td>0.42 (0.23–0.76)</td>
<td>15/1297</td>
</tr>
<tr>
<td>Not severe pre-eclampsia</td>
<td>0.42 (0.26–0.67)</td>
<td>25/3758</td>
</tr>
<tr>
<td>Randomised before delivery</td>
<td>0.40 (0.27–0.59)</td>
<td>36/4416</td>
</tr>
<tr>
<td><34 weeks</td>
<td>0.54 (0.28–1.06)</td>
<td>13/1206</td>
</tr>
<tr>
<td>≥34 weeks</td>
<td>0.35 (0.22–0.57)</td>
<td>23/3210</td>
</tr>
<tr>
<td>Randomised after delivery</td>
<td>0.54 (0.16–1.80)</td>
<td>4/639</td>
</tr>
<tr>
<td>Anticonvulsant before trial*</td>
<td>1.24 (0.49–3.11)</td>
<td>10/439</td>
</tr>
<tr>
<td>No anticonvulsant before trial*</td>
<td>0.34 (0.23–0.51)</td>
<td>30/4590</td>
</tr>
<tr>
<td>Imminent eclampsia</td>
<td>0.26 (0.12–0.57)</td>
<td>8/810</td>
</tr>
<tr>
<td>No imminent eclampsia</td>
<td>0.49 (0.32–0.75)</td>
<td>32/4245</td>
</tr>
<tr>
<td>High PMR country</td>
<td>0.34 (0.21–0.56)</td>
<td>22/2814</td>
</tr>
<tr>
<td>Middle PMR country</td>
<td>0.54 (0.28–1.03)</td>
<td>14/1463</td>
</tr>
<tr>
<td>Low PMR country</td>
<td>0.67 (0.19–2.37)</td>
<td>4/778</td>
</tr>
<tr>
<td>All women</td>
<td>0.42 (0.29–0.60)</td>
<td>40/5055</td>
</tr>
</tbody>
</table>

NNT

- Imminent eclampsia: 36
- Severe PE: 63
- Moderate PE: 109
- Mild PE: 400
Pre-eclampsia

Anticonvulsants

- Give intravenous magnesium sulphate* if woman with severe hypertension or severe pre-eclampsia has or previously had eclamptic fit.
- Consider giving intravenous magnesium sulphate* if birth planned within 24 hours in woman with severe pre-eclampsia.
- Do not use diazepam, phenytoin or lytic cocktail as alternatives to magnesium sulphate* in women with eclampsia.

Features of severe pre-eclampsia
Severe hypertension and proteinuria or Mild or moderate hypertension and proteinuria with at least one of:
- severe headache
- problems with vision such as blurring or flashing
- severe pain just below ribs or vomiting
- papilloedema
- signs of clonus (≥ 3 beats)
- liver tenderness
- HELLP syndrome
- platelet count falls to < 100 x 10⁹/litre
- abnormal liver enzymes (ALT or AST rises to > 70 IU/litre).

Regimen for magnesium sulphate**
- Loading dose of 4 g given intravenously over 5 minutes, followed by infusion of 1 g/hour for 24 hours.
- Further dose of 2–4 g given over 5 minutes if recurrent seizures.

NICE Clinical Guideline 107
RCOG 2010
Magnesium sulphate for neuroprotection

- 4 trials recruited women likely to give birth, 1 trial recruited women with PE

<table>
<thead>
<tr>
<th>Study</th>
<th>Week Range</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mittendorf (2002)</td>
<td>25 - 33 wk</td>
<td>NP 4g bolus, Tocolysis 4g bolus, 2-3 g/h</td>
</tr>
<tr>
<td>Crowther (2003)</td>
<td>< 30 wk</td>
<td>4 g load, 1g / h</td>
</tr>
<tr>
<td>Marret (2006)</td>
<td>< 33 wk</td>
<td>4 g load</td>
</tr>
<tr>
<td>Rouse (2008)</td>
<td>24 – 31 wk</td>
<td>6 g load, 2 g/h</td>
</tr>
</tbody>
</table>

- 3 meta-analyses of same 5 trials – same conclusions i.e. Mg associated with:
 - reduced risk of CP (3.9% vs 5.6% - RR 0.69 [0.55-0.88])
 - reduced risk of gross motor dysfunction (RR 0.64 [0.43-0.83])
 - no difference in risk of mortality (15.1% vs 14.8% - RR 1.01 [0.89-1.14])

- Low statistical heterogeneity among trials
- No evidence of publication or related biases
- NNT (to prevent one case of CP (5% rate) 52 [31-154]
 - ≤ 28 wk (6.2%)
 - > 28 wk (1.3%)

What's new?

- What will arrive on DS for delivery?
- How should we be controlling Blood Pressure?
- Who should receive Magnesium? (and why?)
- When should we deliver?
- When will we see this group of women again?
Fetal Monitoring

- Fetal growth, AFV, UA Doppler at diagnosis
 - If results are normal do not repeat CTG more than weekly.
- CTG at diagnosis
 - Repeat if change in FM, bleeding, pain, change in maternal condition

Fetal distress (Cumulative %)

- Hypertension
- Normotensive

All
- < 29 wks

Days from AEDV

NCCWCH Guideline: Hypertension in Pregnancy
NCCWCH Guideline: Hypertension in Pregnancy

Timing of birth

Before 34 weeks
Manage conservatively
Corticosteroids
 - unless acute fetal compromise
Offer birth if
 - severe refractory hypertension
 - maternal/fetal indication develops
 (as defined in consultant care plan)

<table>
<thead>
<tr>
<th>GA (wk)</th>
<th>OR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>1.35 [1.03-1.78]</td>
</tr>
<tr>
<td>< 32 wk</td>
<td>1.93 [1.28-2.91]</td>
</tr>
<tr>
<td>≥32 wk</td>
<td>0.92 [0.62-1.37]</td>
</tr>
</tbody>
</table>

Logistic regression to control for confounders

Chang et al. 2004
Expectant management of severe PE < 34 wk
Perinatal complications

Abruption

Non-reassuring fetal testing

SGA

Perinatal death

Adapted from Sibai & Barton 2007
Expectant management of severe PE < 34 wk
Maternal complications

- **HELLP syndrome**: 11.1% reported as HELLP OR deteriorating renal function
- **Renal failure**: 2.0% reported as HELLP OR deteriorating renal function
- **Pulmonary oedema**: 2.5%
- **Eclampsia**: 1.1%

1 Odendaal, 2 Sibai, 3 Sibai, 4 Olah, 5 Hall, 6 Vigil-DeGracia, 7 Chammas, 8 Haddad, 9 Oettle, 10 Shear

Adapted from Sibai & Barton 2007
Expectant management of severe PE at < 25 wk

<table>
<thead>
<tr>
<th>Study</th>
<th>N</th>
<th>PMR (%)</th>
<th>Normal Paed Outcome (%)</th>
<th>Maternal Complications (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sibai et al. (1990, USA)</td>
<td>15</td>
<td>93</td>
<td></td>
<td>27</td>
</tr>
<tr>
<td>Moodley et al. (1993, SA)</td>
<td>10</td>
<td>100</td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>Visser & Wallenburg (1995, Netherlands)</td>
<td>25</td>
<td>84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withagen et al. (2001)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gauler-Senden et al (2006, Netherlands)</td>
<td>26</td>
<td>81</td>
<td>19</td>
<td>65 (9-72 mo)</td>
</tr>
<tr>
<td>Hall et al. (2001, SA)</td>
<td>8</td>
<td>88</td>
<td></td>
<td>36</td>
</tr>
<tr>
<td>Bunden et al. (2006, NZ)</td>
<td>31</td>
<td>71</td>
<td>12</td>
<td>71 (18 mo)</td>
</tr>
<tr>
<td>Newcastle (1998-2007) AEDF</td>
<td>15</td>
<td>93</td>
<td>0</td>
<td>58</td>
</tr>
<tr>
<td>Newcastle (1998-2007) PEDF</td>
<td>9</td>
<td>66</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
Timing of birth

Before 34+0 weeks
Manage conservatively
Corticosteroids
- unless acute fetal compromise

Offer birth
- severe refractory hypertension
- maternal/fetal indication develops
 (as defined in consultant care plan)

34+0 – 36+6 weeks
Severe hypertension, BP controlled and steroids completed
Mild / moderate hypertension depending on maternal and fetal condition,
 risk factors and availability of neonatal intensive care (offer birth)

After 37+0 weeks
Mild / moderate hypertension within 24-48 h
IOL vs. expectant monitoring for GH / mild PE after 36 wk gestation (HYPITAT Trial)

1153 eligible

36\(^0\)-41\(^0\) wk
DBP ≥ 95 mm Hg [6 h] – 65%
DBP ≥ 90 mm Hg [6h] + Proteinuria

756 randomised

IOL
0.79 (0.7-1.0)
38.7 (37.9-39.8)
366 (97%)

Expectant

Onset of labour (Dy)*

IOL

366 (97%)

GA delivery (wk)*

IOL

6.3 (3.7-10.9)
39.9 (38.9-40.4)
173 (46%)

Adverse maternal outcome*

Severe HT: Systolic

Diastolic

IV antihypertensive

IV anticonvulsant

CS

Adverse neonatal outcome

Arterial pH < 7.05

IOL (n=377) Expectant (n=379) RR (95% CI)

Adverse maternal outcome* 31% 44% 0.71 (0.59-0.86)
Severe HT: Systolic 15% 23% 0.63 (0.46-0.86)
Diastolic 16% 27% 0.61 (0.46-0.80)
IV antihypertensive 3% 10% 0.34 (0.18-0.62)
IV anticonvulsant 6% 12% 0.53 (0.33-0.84)
CS 14% 19% 0.75 (0.55-1.04)
Adverse neonatal outcome 6% 8% 0.75 (0.45-1.26)
Arterial pH < 7.05 3% 6% 0.46 (0.21-1.00)

* Mortality, morbidity (eclampsia, HELLP, pulmonary oedema, TED, abruption)
Whats new?

• What will arrive on DS for delivery?
• How should we be controlling Blood Pressure?
• Who should receive Magnesium? (and why?)
• When should we deliver?
• When will we see this group of women again?
Hypertension
Dysmetabolic syndrome
Diabetes
Cardiovascular death

Pre-eclampsia
Preterm delivery

Hypertension
Dysmetabolic syndrome
Diabetes
Cardiovascular death

Placenta-mediated disease

SGA
Preterm delivery

Risk mortality after PE
626,272 births (1967-1992)
All-cause mortality

All causes 2.7 [2.0-3.7]
Cardiovascular 8.1 [4.3-15.3]
Stroke 5.1 [2.1-12.4]

Irgens et al. BMJ 2001
Figures are adjusted hazard ratio [95% CI]

Survival (% mothers)
No. years from first birth

Smith et al. Lancet 2001
Long term risk of cardiovascular disease after preeclampsia
Systematic review and meta-analysis

<table>
<thead>
<tr>
<th>Author</th>
<th>Preeclampsics</th>
<th>Non-complicated</th>
<th>OR (95% CI)</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wilson et al 2003</td>
<td>48/1043</td>
<td>38/796</td>
<td>0.96 (0.62, 1.49)</td>
<td>7.78</td>
</tr>
<tr>
<td>Kaaja et al 2005</td>
<td>10/397</td>
<td>25/3162</td>
<td>3.24 (1.55, 6.80)</td>
<td>4.65</td>
</tr>
<tr>
<td>Lyke et al 2009</td>
<td>846/33826</td>
<td>9777/741012</td>
<td>1.92 (1.79, 2.06)</td>
<td>11.94</td>
</tr>
<tr>
<td>Mann et al 1976</td>
<td>21/43</td>
<td>53/227</td>
<td>3.13 (1.60, 6.14)</td>
<td>5.21</td>
</tr>
<tr>
<td>Rosenberg et al 1983</td>
<td>26/66</td>
<td>229/971</td>
<td>1.40 (0.87, 2.28)</td>
<td>7.19</td>
</tr>
<tr>
<td>Croft & Hannaford 1989</td>
<td>39/93</td>
<td>119/513</td>
<td>2.39 (1.51, 3.79)</td>
<td>7.48</td>
</tr>
<tr>
<td>Haukkamaa et al 2004</td>
<td>29/32</td>
<td>112/208</td>
<td>8.29 (2.45, 28.05)</td>
<td>2.26</td>
</tr>
<tr>
<td>Haukkamaa et al 2009</td>
<td>2/35</td>
<td>29/489</td>
<td>0.96 (0.22, 4.21)</td>
<td>1.64</td>
</tr>
<tr>
<td>Smith et al 2001</td>
<td>12/22781</td>
<td>31/106509</td>
<td>1.81 (0.93, 3.53)</td>
<td>5.26</td>
</tr>
<tr>
<td>Wikstrom</td>
<td>176/12533</td>
<td>2306/383081</td>
<td>2.35 (2.02, 2.74)</td>
<td>11.32</td>
</tr>
<tr>
<td>Hannaford et al 1997</td>
<td>69/3000</td>
<td>216/18451</td>
<td>1.99 (1.51, 2.61)</td>
<td>9.93</td>
</tr>
<tr>
<td>Mongraw-Chaffin et al 2010</td>
<td>24/481</td>
<td>242/13922</td>
<td>2.97 (1.93, 4.56)</td>
<td>7.86</td>
</tr>
<tr>
<td>Funai et al 2005</td>
<td>41/1055</td>
<td>269/36858</td>
<td>5.50 (3.94, 7.68)</td>
<td>9.12</td>
</tr>
<tr>
<td>Irgens et al 2001</td>
<td>27/24155</td>
<td>325/602117</td>
<td>2.07 (1.40, 3.07)</td>
<td>8.34</td>
</tr>
<tr>
<td>Overall (I-squared = 80.4%, p = 0.000)</td>
<td></td>
<td></td>
<td>2.28 (1.86, 2.79)</td>
<td>100.00</td>
</tr>
</tbody>
</table>

NOTE: Weights are from random effects analysis.

Brown et al. 2011 (submitted)

Preterm delivery was not associated with an increased risk of future CV disease
RR 1.28 (0.82-1.99)
Long term management of women at increased risk of cardiovascular disease

Diet
- Diet rich in fruit and vegetables lowers BP (7.2/2.8 mm Hg)
- Effects of low fat / low salt diet additive (11.4/5.6 mm Hg)
- Effect of enhanced physical activity additive

Antihypertensive therapy
- High normal BP (130-139/85-89 mm Hg) - increased risk CVD (RR 2.33)
- In hypertensive subjects lowering BP reduces risk of CHD / Stroke (RR 0.79 for CHD, 0.54 for stroke for 10 mm fall in SBP or 5 mm fall in DBP)
- Greater the reduction, greater the reduction in risk
- Similar effect in men / women and those with / without H/O CVD

Lipid-lowering therapy
- Linear relationship between serum cholestrol and risk CHD
- In hypercholestrolaemic subjects statins reduce risk of CHD / Stroke (OR 0.70 for CHD, 0.81 for stroke)
- Similar effect in men / women and those with / without H/O CVD
NCCWCH Guideline: Hypertension in Pregnancy

Postnatal management of preeclampsia

- Measure BP at least 4x daily while in-patient, every 1-2 d for up to 2 w after discharge until off Rx and no HT
- Consider reducing Rx when BP <140/90 mmHg, reduce when < 130/80 mmHg
- Perform medical review at 6-8 w after birth – refer women who still require anti-HT Rx for specialist assessment

Management options

- Life style advice for those with modifiable factors (Diet (low GI), exercise, smoking)
- Pharmacological intervention in those with:
 - Hypertension
 - Hypercholestrolaemia

Screen for risk factors CVD (HT, proteinuria HDL-C, FBG)

Determine 10 year risk of CVD (QRISK2)

- FH CVD in 1º relative (<60 y)
- On antihypertensive Rx at review
 - Treatment stopped
 - Dose reduced
- BP ≥ 140/90 mm Hg
- PCR ≥ 30 mg/mmolL
- Total-C ≥ 5.0 mmol/L [≥6.22 mmol/L]
- Total/ HDL-C ratio ≥ 4
- TG ≥ 1.7 mmol/L
- Median QRisk2 Risk [IQR]*
 - RR [IQR]

- Hypercholestrolaemia

* Risk of CVD (MI or CVA) in next 10 y – RR (person risk/typical risk [matched for age/ethnicity])

RFs – Age, sex, ethnicity, UK postcode, smoking status, Angina / MI 1º relative < 60 y, DM, CRD, AF, AF BP treatment, RA, Total/HDL-C ratio, systolic BP, BMI

\[\text{n=100 (of 140 offered)} \]
High risk

- ≥ 1 High risk states
- Clinically manifest disease
- Coronary heart disease
- Cerebrovascular disease
- Peripheral vascular disease
- Abdominal aortic aneurysm
- ES/chronic kidney disease
- Diabetes mellitus
- 10-y CVD risk ≥ 10%

At risk

- ≥ 1 Major risk factors

Cigarette smoking

SBP ≥120, DBP ≥90 mmHg or treated hypertension

Total-C ≥5.2 mmol/L, HDL-C ≤1.3 mmol/L or treated dyslipidemia

Obesity (particularly central)

Poor diet

Physical inactivity

FH CVD: 1º relative (<55 y in men or < 65 y in women)

Metabolic syndrome

Advanced subclinical atherosclerosis

Poor exercise capacity

Systemic A/I collagen VD

H/O PE, Gestational diabetes or PIH

Ideal CV health

- All of these

Total-C < 5.2 mmol/L untreated

BP <120/<80 mm Hg untreated

FBG <5.55 mmol/L

BMI <25kg/m²

Abstinence from smoking

Physically active

- ≥ 150min/wk mod intensity
- ≥ 75 min/wk vigorous intensity
- or combination

Healthy (DASH-like) diet

RFs with special contribution in women

- Depression & other psycho-social risk factors
- A/I disease (SLE, RA)

1 Coronary calcification, carotid plaque or thickened IMT

2 On treadmill test and/or abnormal heart rate recovery after stopping exercise

3 SLE or rheumatoid arthritis

Mosca et al. Circulation 2011
• **Blood pressure**
 - Optimal BP *(<120/80 mmHg)* encouraged through lifestyle approaches (IB)
 (Weight control, increased PA, alcohol moderation, sodium restriction, ↑ fruit/veg/low-fat diary products)
 - **Pharmacotherapy when BP ≥ 140/90** *(≥ 130/80 in CRD/DM)* (IA)
 Thiazide diuretics should be part of regime (unless contraindication or indication for other agent.
 Initial treatment for women with acute coronary syndromes or MI should be with β-blocker &/or ACE/ARBs

• **Lipids**
 - Optimal lipid levels *(LDL-C < 2.59 mmol/L, HDL-C > 1.29 mmol/L, TG <1.71 mmol/L)*
 encouraged through lifestyle approaches (IB)
 - **Pharmacotherapy for LDL-C lowering**
 (a) High risk women (e.g. CHD) (IB)
 (b) At-risk women
 - if LDL-C ≥ 3.37 mmol/L, there are multiple RFs & 10 y risk 10-20% (IB)
 - if LDL-C ≥ 4.12 mmol/L and there are multiple RFs even if 10 y risk <10% (IB)
 - if LDL-C ≥ 4.90 mmol/L regardless of RFs (IB)
Thank you.

6th International Scientific Meeting of ISOM
Keble College Oxford
7th-8th July 2012

www.ISOM2012.org

Abstracts open / Registration open